
Team DigiLearn
Software Design v1.0:
The Digital Backpack

Doctor Morgan Vigil-Hayes
Volodymyr Saruta
Caitlin Abuel
Grave Shirey
Israel Bermudes
Kristine Hermosado
Sebastian Kastrul

5 February, 2021

Team DigiLearn

Table of Contents

1.0 Introduction . 2

2.0 Project Overview . 3

2.1 Implementation Overview .3

2.2 Architectural Overview . 5

3.0 Module and Interface Descriptions .8

3.1 Front-End .8

3.1.1 Mobile Application for Users 8

3.1.2 Web Application for Admins 12

3.2 Back-end .17

3.2.1 Client/server communication manager 17

3.2.2 Task Queue Module . 20

3.2.3 REST Interpreters . 21

3.2.4 DigiLearn JSON .25

3.2.5 Data Management . 27

3.2.6 Authentication Management 32

3.2.7 Encryption .37

4.0 Implementation Plan . 41

5.0 Conclusion .44

1

Team DigiLearn

1.0 Introduction

The COVID-19 pandemic has led to a sudden shift to remote

learning. Unfortunately, many students across America don't

have access to a reliable Internet connection. The phenomenon

known as “the homework gap” affects nearly 12 million students that are unable to fully

participate in their coursework due to a lack of sufficient Internet access. Such a situation

disproportionately affects disenfranchised communities. These students must rely on

public hotspots to complete their assignments.

Dr. Vigil-Hayes runs the Community aware Networks & Information Systems Laboratory

(CANIS) in the School of Informatics, Computing, and Cyber Systems at Northern Arizona

University. CANIS Lab focuses on network analysis and community-centered design.

Team DigiLearn is working with Dr. Vigil Hayes and CANIS labs to bring to life The Digital

Backpack. The Digital Backpack or DigiPack is an app that will allow a fluid transition

between online and offline learning. When a user comes into range of a wifi connection,

the DigiPack will automatically download the requested content for offline use later. The

app will also automatically upload completed assignments for the user. These upload and

download requests can be queued offline to be performed when a network connection is

available. The app will interface with popular Learning Management Systems such as

Google Classroom.

This document outlines the overall software design plan for the Digital Backpack. Section

2.0 gives an overview of the project, broken down between an implementation overview

as well as an architectural overview. The components of the software architecture are

broken down into separate modules in Section 3.0. The first subsection, 3.1, focuses on

the front-end components, while section 3.2 goes into detail about the back-end. An

implementation plan is discussed in section 4.0, accompanied by a Gantt chart which

outlines the weekly workflow goals for the project. This document concludes with section

5.0, which provides a review of the software design plan.

2

Team DigiLearn

2.0 Project Overview

This section gives a general overview of the project. Section 2.1 focuses on

the implementation overview, which discusses the bigger picture of the

product and the certain technologies and approaches that will be used to

complete the project. Section 2.2 is the architectural overview, which will

go into detail about the higher level aspects of the project. The architectural overview is broken

down into two parts: an architectural diagram, and a discussion of the architecture.

2.1 Implementation Overview

The team solution is to create a mobile application (need to fix to just android and plugin) that will

enable students to interact with educational materials seamlessly between online and offline

environments. This solution will contain two main components: the user-interface application and

the proxy server.

2.1.1 Tools and Technologies

To implement the DigiPack, we will use the tools and technologies listed below:

Front-End:

- Adobe XD: User-interface design

- Adobe XD is a vector-based design for mobile and web applications. The tool’s

main goal is to make it easier for UI and EX designers to create designs,

prototypes, and wireframes. We chose this tool for designing our mobile and web

application development as it will help with multiple designs and can quickly

create wireframe prototypes.

- Flutter: Cross-platform

- Flutter is a cross-platform app development software created by Google. It allows

both Android and iOS implementation under one codebase. The software uses an

3

object-oriented language called Dart, which has a similar C-style syntax. Since the

team wants to build the application under one codebase to work on different

devices, Flutter is the best option. The team chose this tool as the best approach

to deal with our mobile and web application between Android, iOS, and chrome

extension.

Back-End:

- Django: Web Framework

- Django is an open-source web framework written in Python. It helps secure and

maintain websites as it reduces the amount of work for web development. As the

project promises a web application aside from the mobile application, Django is

the best option for rapid and continuous development.

- Digital Ocean: Cloud service

- DigitalOcean is a cloud hosting service built by developers with a simple interface

to provide for easy configuration. With the benefit of being an easily configurable

service, DigitalOcean is the best tool fit for the project.

- RESTful Service: Data handling

- RESTful services are stated to an architectural style that contains fixed constraints.

With the structure style, the server and the users can exchange resources using a

standardized interface and protocols. The service also provides a structure to

requesting web content and local standardization of content for ease of use and

modularity. The project needs to push and pull resources from the services such

as Google Classroom, Google Docs, Khan Academy, and Youtube, and RESTful

service can help fulfill that need.

- MySQL: Databases

- MySQL is a standard service for creating and managing databases. As MySQL is

standard, familiar, and compatible with Django, it is a fit for this project.

- OAuth2: Security

- OAuth2 is an industry-standard authentication framework. The framework allows
sharing the same resources from one site to another without entering credentials
again. OAuth2 is the tool chosen to resolve the issue of ensuring that all end
devices in our system only communicate with authorized devices.

4

2.2 Architectural Overview

The core architecture of the DigiLearn service is largely unchanged from the Requirements

Specifications Document. The diagram below shows a more granular depiction of each

component, describing the flows of data and control within the system.

The majority of communications will be managed by the “client/server communications manager”

(henceforth referred to as the CCM) and “resource/server communications manager” (RCM).

These two managers form the two ends of communication between the client and the resources

that DigiLearn provides access to. The resource/server communications manager processes data

sent and received between Google Drive, Google Classroom, Khan Academy and the DigiLearn

service. Requests, both from clients and to resources, are in the form of HTTP packets; the RCM

and CCM, in the most basic sense, are web sockets used for sending and listening for HTTP

packets.

The RCM when receiving data from a resource will send the data to its respective REST

interpreter to be converted into the DigiLearn JSON format. The REST interpreters, described in

section 3.2.3, are as their name implies: interpreters. Each interpreter will be responsible for

converting data received from a resource into a format that the DigiLearn architecture can handle

and vice versa. Since each resource has their own requirements for communication these

interpreters are key to ensure that communication meets the standards for each resource, to

create modularity allowing for new resources to be supported in the future, and to create

homogenous data within the DigiLearn system. Homogeneity is achieved through the DigiLearn

JSON structure providing a consistent format and ample context to any data transfer both within

and outside of the DigiLearn architecture.

This JSON file will be the main mode of communication within the DigiLearn architecture. Any file

transfer, request, authentication, or other communication will be done with the JSON file structure

described in Section 3.2.4. Metadata for file transfers and requests: upload/download dates, file

sizes, what resource is involved in the transfer or request, along with metadata describing the

communication itself: user identification, permissions, associations, asynchronous communication

tags, and more will be stored in each JSON file. This will allow any part of the system to use the

same file and structure to serve the user and create an architecture with relatively low coupling.

5

Figure 2.2.1: DigiLearn Architectural Overview Diagram.

Internally, the Data Manager (DM) will be the main source and sink for communication with the

client(s). Documents requested by users will be sent to the DM by an interpreter, which will then

pass the document to the storage manager to be held until the user is able to download it to their

device and/or it expires. The storage location will be passed back to the DM and added to the

JSON file for later use. The JSON file is then parsed for the metadata required by the DigiLearn

Database and passed to the Database Manager.

The metadata will be used to create database entries allowing the DigiLearn service to track file

and user associations, storage locations, request entries, and more. Storing this data in a

database allows for JSON files to be created and destroyed dynamically, freeing up space on the

server and providing much needed search and sort functionalities to the DigiLearn architecture.

Before the JSON file is destroyed after being added to the database, the DM sends the file to the

CCM. The CCM will then check if any of the associated users are available to receive the data

associated with the file and if not simply returns the file. If a user is available the CCM already has

all of the information necessary to send the user their data by requesting the document from the

Data Manager and passing it to the user.

User availability in the context above is determined by the CCM and the Authentication Manager

(AM) described in Section 3.2.6. A user1 connects to the DigiLearn server initially by sending an

HTTP request to the server stating their user ID, their password, the time they sent the request,

and the last time they connected. The CCM passes the required information to the AM where it is

referenced against the Authentication Database. The user password is compared against a

hashed password stored in the Authentication Database. If the user is who they say they are, the

connection is opened.

This open connection, or “session”, starts a series of events to serve the user as much as

possible while the connection persists. First a confirmation of connection is sent to the user; this

confirmation signals the user to send any pending requests or missing file markers back to the

server to be filled. At the same time, the CCM sends the users information to the DM which in turn

compiles a list of all of the files that have been acquired for the user since they last connected.

Once this list is compiled it is sent back to the CCM to be processed by the Client Queue (CQ)

and sent to the user.

Due to the possibility of connection loss in the middle of a transfer, the first JSON file sent to the

user contains all metadata about the files they are about to receive. The user's device uses this to

determine if the whole file is received during the transfer and if not, can mark which pieces of

files or whole files that are missing from the transmission. Users are able to make search queries,

1 User in this context refers to the DigiLearn application on a users device, most of the process described
here is not shown to the actual user.

7

mark documents to upload or submit as assignments, and request specific documents from their

accounts while offline through the DigiLearn application. These requests are stored on their

device until they connect to the DigiLearn service next and they are uploaded to the server along

with the missing file markers.

The CCM begins sending the user all of the files that the server has requested for them since

their last connection and at the same time begins populating a new query to the DM. This query

gets all of the pieces or whole files that are missing from the previous transmission from the DM

and adds them to the beginning of the queue to send to the user. Any new requests or uploads

are sent to their respective REST interpreters to be passed to the requested resource and the

process starts again.

Team DigiLearn

3.0 Module and
Interface Descriptions

This section breaks down the overall system of the Digital Backpack into individual modules and

goes into detail about how each of these sections fit into the bigger picture. The main

components can be separated by the front-end functionalities of the app, and the back-end

functionalities.

3.1 Front-End

The front-end of the Digital backpack allows the user to experience a high quality app, working

with the user interface and platform development.

8

3.1.1 Mobile application for users

The mobile application module focuses on the user interface which the users will be interacting

with. The application allows users to download, submit, and search educational materials. The

UML below shown in Figure [some number] is the mobile application components.

Figure 3.1.1.1 : Mobile Application UML (ROUGH DRAFT UML)

9

Further explanation about the components of the UML is discussed below:

Users

The users are the students in the UML design. The students are the one interacting with other

classes within the UML. They are able to log in, view download progress, view history, view

grades and lastly, do Google and KhanAcademy search. The user has the attributes and

behaviors listed below:

● username - The user will create a username and it will be used to uniquely identify them.

● password - A form of security that gives authorization to access the account. Only the

user who created the account can enter.

● email - The email will be saved to the database after account creation for security

purposes.

● age - The user's age is an essential aspect of the project because certain risks pertaining

to age and legal limitations could arise if care is not taken. It will also determine what kind

of UI the user will get.

● securityQuestion - The purpose of this attribute is for security purposes, in the event of

the user forgetting their account information, the user can regain their account through

this questionnaire.

● securityAnswer - This is connected to the securityQuestion attribute as it will determine if

the user is the right account owner.

● SignUp() - The first thing users have to do is create an account.

● LogIn() - After the user has established their own account, the users can easily log in.

● Search() - One of the features of the application is allowing users to be able to search

through the given platform such as Google search.

● Submit() - The users will be able to submit their educational documents.

● Download() - After doing a search, the user can download the materials they wish to.

● CheckHistory() - The user will be able to check their history logs of their downloaded and

searched documents.

Main Page

The main page is where the users are going to be redirected after signing up or logging in. The

main page would have a relationship with the menu bar page and the account page. From the

main page, the users have the option to view the downloads, submission and search page. The

main page also contains the menu bar that will give more options to do. The main page has the

attributes and behaviors listed below:

● menuBar - The user would be able to access other pages through the menu bar.

10

Downloading and Submitted Page

The downloading and submitted page is part of the main page as Both pages have similar

attributes and behaviors but the downloading page requires getting the time left on the certain

file. The attributes and behaviors for both pages are listed below:

● fileName - The name of the file the user is going to download.

● loadingTime - This should display the time it takes for a certain file to download or submit.

● getFileName() - The method should grab the name of the file downloading.

● submitPapers() - The method should submit the files that the user has chosen.

● getLoadingTime() - The method should be able to calculate the amount of time the file is

taking.

Menu Page

The menu page contains optional operations such as going to the account, history, and setting

pages. The menu page is accessed through the main page on the top left corner of the interface.

The menu page has the attributes and behaviors listed below:

● gradePage - The users will be able to check their grade through this attribute.

● historyPage - The users will be able to check their history through this attribute.

● accountPage - The users will be able to check their profile through this attribute.

● settingsPage - The user will be able to go to the settings through this attribute.

● directToGradePage() - The method should redirect the users to the grades page.

● directToHistoryPage() - The method should redirect the users to the history page.

● directToAccountPage() - The method should redirect the users to the account page.

● directToSettingPage() - The method should redirect the users to the setting page.

Account Page

The account page is a basic page that would only contain the user’s first and last name. The

account page has the attributes and behaviours listed below:

● first name - The user’s first name is displayed.

● last name - The user’s last is displayed.

● getName() - The method should get the user’s first and last name from the database.

Search Page

The search page is where the user can use the search feature. The search page has the attribute

and behaviours listed below:

11

● searchedItem - The name of the searched item.

● googleResult - The result the google search would pop out.

● getGoogleResult() - The method should grab the result that the Google search produces.

History Page

The history page is where the downloaded and searched files are displayed. The history page

has the attribute and behaviours listed below:

● fileName - The name of the file that the user has previously downloaded.

● downloadedHistory - The section where the downloaded files can be viewed.

● submittedHistory - The section where the submitted files can be viewed.

● searchedHistory - The section where the search files can be viewed.

● getHistory() - The method should be able to grab the history files for each section.

Grades Page

The grade page is where the student’s grades are going to be displayed. The grades page has

the attributes and behaviors listed below:

● grades - The grade of the user for that certain class would be displayed.

● className - The class names of the user would be displayed.

● getGrades() - The method should grab the user’s grades with the class name.

3.1.2 Web application for admins

The web application focuses on the user and admin side of the application. The web application

will be able to use Google plug-in’s to allow multiple functions for the admin. These functions

include access to a login page that directs the admin to the main page and allows the admin to

view the users search history, and downloaded history, as well as be able to filter what can be

viewed by the user. All of the functions and connections of the web application are illustrated in

the figure below.

12

Figure 3.1.2.1 : Web Application UML Diagram

3.1.2.1 Admin Login

The administrator in the diagram above is the parent of the child or user. The administrator will

need identification to verify their accessibility to view the users account. Key attributes for the

admin login are:

● userName: The administrator will use the username of the user they are granted access

to in able to be verified to log in.

● adminEmail: The administrator will need to provide their email address for identification

and authorization.

13

● userEmail: The administrator will need the user’s email address in order to access views

to their accounts.

● password: The administrator will need the user’s password in order to access the view to

their accounts.

Key operations for the administrator are:

● getEmail(): Necessitates the administrator to enter their email address and the user’s

email address in order to create an account.

● getUserName(): Necessitates the administrator to enter the username of the user they

are viewing in order to gain access to their account.

● getPassword(): Necessitates the administrator to create a password when creating an

account and using that password to login to their account.

3.1.2.2 Main Page

After the administrator is logged in, they will be redirected to the main page, which includes the

primary features of the application as well as a main menu bar that is able to direct them to

different pages. Key attributes of the main page are:

● mainMenu: The administrator will be able to view a main menu bar that gives them access

to click to the other pages of the application.

● downloaded: The administrator will be able to view the history of items downloaded by

the user.

● searched: The administrator will be able to view the search history of the user.

Key operations of the main page are:

● mainMenu(): Provides the main menu bar on each page, and includes links to the other

pages.

● getDownloadedHistory(): Receives and allows the administrator to view the user’s

downloaded history.

● getSearchedHistory(): Receives and allows the administrator to view the user’s search

history.

3.1.2.3 Main Menu

14

The main menu will be located on the side of each page on the application. The main menu will

include links to all other pages on the web application. Key attributes of the main menu are:

● filtering: The administrator will be able to click a link that routes them to a page that

provides them filtering options.

● notifications: The administrator will be able to view notifications of recent downloaded

and searched items from the user.

● mainPage: The administrator will be able to click a link that routes them to the Main Page

of the application.

Key operations of the main menu are:

● mainPage(): Allows administrators to link back to the main page.

● filtering(): Allows the administrator to link to a filtering page.

● getNotif(): Receives recent searched and downloaded history and allows the

administrator to view notifications of the history.

3.1.2.4 Searched Page

The searched page is located on the main page. This page allows the administrators to view what

the user has searched. Key attributes for the searched page are:

● searched: The administrator will be able to view the search history of the user

Key attributes for the searched page are:

● getSearchedHistory(): Receives the recent user search history and allows the

administrator to view the user’s search history

3.1.2.5 Downloaded Page

The downloaded page is located on the main page. This page allows the administrators to view

what items the user has downloaded. Key attributes of the downloaded page include:

● downloaded: The administrator will be able to view the history of items downloaded by

the user

Key operations of the downloaded page include:

15

● getDownloadedHistory(): Receives the recent downloaded history allows the

administrator to view the user’s downloaded history

3.1.2.5 Filtering

The filtering page can be accessed through the main menu and is used to allow the administrator

access to filter the content that the user is searching and downloading. Key attributes and

operations for filtering include:

● filteringOptions: The administrator will be able to filter search and download settings for

the user

3.1.2.5 Notifications

The notifications allow the administrator to view the most recent searches and downloads from

the user. Notifications can be viewed through the main menu. Key attributes for the notifications

include:

● notifications: Administrators will be able to view notifications of recent downloaded and

searched items from the user.

Key operations for the notifications include:

● getNotif(): Allows the administrator to view notifications of the recent searched and

downloaded history.

● getSearchedHistory(): Receives the recent user search history and allows the

administrator to view the history

● getDownloadedHistory(): Receives the recent user downloaded history and allows the

administrator to view the history

16

3.2 Back-End

The back-end of the Digital Backpack handles the functionalities necessary for opportunistic

content delivery.

3.2.1 Client/Server Communication Manager

Server-Client Communication is a significant part of the Digital Backpack back-end. Metadata will

be sent between the client and the server to communicate important information such as: the

connection date, requested data, and requested data size. This information can then be used to

determine what data is missing when connections are disrupted. This server-client

communication will be implemented by utilizing Websockets, which allow for bi-directional

communication.

Figure 3.2.1A: Websocket Protocol Between the Client and Server

17

Figure 3.2.1A shows a visual representation of the Websockets protocol that will be used for the

server-client communication. First, the client makes an initial HTTP request to be upgraded to

websockets. The server responds to this request and opens a persistent websocket connection

between the server and client. Metadata will be exchanged during the bi-directional

communication.

Figure 3.2.1B: Server/Client Communication UML

The client/server communication manager consists of the server, client, and consumers.

18

Server

The server represents the central unit for processing user requests. Most of the work required by

the server is deferred to consumers that handle requests. The server has the following method:

● initialize() - Initializes the server.

Client

The client represents the user that interacts with the server to make upload or download

requests. The client has the following fields and methods:

● userInfo - A JSON file that contains information about the user as well as metadata

pertaining to requested file transfers. Authentication information is also stored in this

JSON, which will be used by the server to authenticate the user’s identity.

● validateLastTransfer(JSON fileMetadata) - This function takes in a JSON file that

contains metadata about a file transfer. Using this, the client device will determine

whether or not the file transfer was complete and successful.

● compileRequest() - While offline, any requests for uploads or search queries that the user

makes will be compiled on the user’s device until a connection is established and the

requests can be uploaded to the server.

● submitRequest() - When a connection is achieved, all compiled requests on the user’s

device will be uploaded to the server.

Consumer

The consumer handles tasks that are designated by the server. The consumer functions are

based on Django’s built-in class-based websocket consumers. Operations done by the consumer

are handled by the asynchronous task queue. (See Section 3.2.2 for further details about the

Task Queue)

● connect(self, message, **kwargs) - Accepts the connection and attempts to authenticate

the user. If the user is authenticated, they will have access to the application’s

functionalities.

● authenticateUser(self, content, **kwargs) - This function takes a user info JSON file and

passes the necessary information to the Authentication Manager. (See Section 3.2.7 for

further details about the Authentication Manager)

● fetchRequests(self, content, **kwargs) - Using the user info JSON file containing file

requests, the consumer passes the relevant information to the Database Manager, which

will compile the requested files that are available for the user. (See Section 3.2.5 for

further details about the Database Manager)

19

● pushRequests(self, content, **kwargs) - When the consumer receives the compiled list of

requested files from the Database Manager, it will begin pushing these files to the user’s

device.

● uploadData() - Upload requests from the user will be uploaded to the DigiLearn server.

3.2.2 Task Queue Module

The task queue will handle asynchronous processing as requests are made by the user.

Figure 3.2.2: Celery Queue Workflow

The overall Task Queue Module consists of the Django server, a message broker, workers, and a

results storage. Celery, the task queue manager, is made up of the message broker, workers, and

results storage.

Module Components

● Django Server - The Django server defers tasks to Celery for background processing.

● RabbitMQ - RabbitMQ serves as the designated message broker for the system. It

handles exchanges between messages and task distribution between workers.

20

● Celery Worker - Each Celery worker will execute the task it is designated

● Results Storage - A basic data structure that can be used to store the results of an

executed task.

3.2.3 REST Interpreters

The DigiLearn service will support three resources: Google Drive, Google Search, and Google

Classroom. Each resource is able to send and receive different data with a multitude of unique

formats, data, and values; therefore each resource will need its own interpreter to convert the

data received from each resource into a format that is usable by the DigiLearn server and

conversely convert the DigiLearn format into something usable by the resource. These

interpreters, in tandem with the Server-Client Communication Module described in Section 3.2.1

form the inlet and outlet for data between the DigiLearn server and supported resources.

3.2.3.1 Google Drive

The Google Drive interpreter converts JSON objects between the DigiLearn format and

Google Drive format.

21

● Public getters

Take in user authentication values needed for proper connection to the resource

and necessary data to serve the request. All return a DigiLearn JSON object

containing all values received by the server in response to the request.

● Private getterHelpers

Take in DigiLearn format JSON objects and return Google Drive JSON format

objects.

● uploadFile

Takes in DigiLearn format JSON file object and converts it with the help of

uploadFileHelper to Google Drive JSON format object and receivable data

● setSecretFile

22

This method is used for switching between user accounts based on the user

object passed into any of the other methods.

3.2.3.2 Google Classroom

The Google Classroom interpreter converts JSON objects between the DigiLearn format

and Google Classroom format.

● Public getters

Take in user authentication values needed for proper connection to the resource

and necessary data to serve the request. All return a DigiLearn JSON object

containing all values received by the server in response to the request.

● Private getters

23

These methods are used to fill in information to better describe the JSON objects

returned by the public getters. They are private because they are used by the

public getters to create more complete data for later use in the database

described in Section 3.2.5.2

● turnInCourseWork

This method is used to convert DigiLearn JSON file objects into Google Classroom

JSON objects with the necessary parameters for submission for a specific

assignment.

3.2.3.3 Google Search

The Google Search interpreter converts JSON objects between the DigiLearn format and

Google Search format.

● Request

Makes a request on behalf of the user to the Google Search engine with the

restrictions set by DigiLearn, teachers, and parents through Google Classroom.

Returns JSON object with the first page of results. Queries can be made for both

text and image searches through the Google Search engine.

24

● requestMore

If requested by the user, up to ten (10) pages of results can be returned to the user.

This limit is put in place by the Google Search API.

3.2.4 DigiLearn JSON

The DigiLearn JSON format is created dynamically by the system, adding objects and values as

available or necessary. At the core are nine (9) main types of objects with two “superclasses” to

organize them. The superclasses, denoted “Authentication” and “Session”, are used to describe

the user and their connection status respectively. In the Authentication superclass user ID’s, hash

keys, authentication tokens, and other information necessary to ensure that the users connection

is secure and the DigiLearn server can properly and legally connect to their account(s). The

Session superclass is used to describe the users status with the server. Information such as the

date and time they last connected to the server, if they are currently connected to the server,

when they connected to the server for this session, what data has been pulled for them since the

last time they connected, and any requests they may have made for the DigiLearn server to get

for them this session.

This JSON file is used exclusively for transfer between the DigiLearn server and Digital Backpack

users. Within the DigiLearn server architecture the data represented in the JSON file is stored

either in the database and storage described in Section 3.2.5 or as Python objects.

Due to the physical size of this file due to formatting for readability it is attached to this document,

the objects that are used to build the JSON file are shown below:

25

Figure 3.2.4.1: Digital Backpack JSON Diagram

3.2.5 Data Management

Storing data and user associations with said data on the DigiLearn server is crucial to ensuring

that users can be served efficiently. Associations between files, users, teachers, classrooms,

assignments, and more will be handled by the Database Manager. Files and documents that need

to be stored will be controlled by the Storage Manager. The Data Manager itself will be the main

source and sink for data within the DigiLearn architecture and provides a multitude of

functionalities to facilitate this.

27

Adding and returning (or “getting”) files from the Storage Manager as well as adding users, files,

and courses to the database via the Database Manager are available for use by any part of the

architecture with permissions to access the Data Manager. Removing things however, is only

done by the Data Manager. The Data Manager automatically removes files and their entries in the

database after a specified amount of time when the Data Manager is initialized. This ensures that

data isn’t accidentally deleted by another program, and that used space on attached storage

mediums is kept to a minimum.

3.2.5.1 Storage Manager

The Storage Manager will be used to control the flow and storage of files and documents

within the DigiLearn server. The Storage Manager represents a set of methods and

controls to be used by the Data Manager to create, store, delete, and transfer data to and

from supported resources and users.

28

3.2.5.2 General-Storage Database Manager

The Database Manager acts as an interface between the general-storage database and

the rest of the DigiLearn architecture. The General-Storage database is described below

in section 3.2.5.3. The database manager is implemented using Django’s database API.

The database itself is implemented using MySQL.

3.2.5.3 General-Storage Database

The general-storage database stores minimal user data such as a unique student

identifier, class enrollment, and assignment submissions. The general-storage database is

implemented in accordance with the entity-relationship diagram below in figure 3.2.6.1.1.

The following subsections clarify the entities, their attributes, and their relationships with

each other.

● student

The student entity refers to a student served by the Digital Backpack. The

studentId is a unique identifier throughout the Digital Backpack system. This entity

is associated with the classes it is enrolled in, resources transferred to the student,

assignments submitted by the student, and Google searches submitted by the

student.

● class

The class entity refers to scholastic classes served by the Digital Backpack.

Classes are associated with assignments and additional resources which are

provided to the students. Classes are also associated with the students that are

enrolled in them.

29

Figure 3.2.6.1.1: General-Storage Database Entity-Relationship Diagram.

30

● assignment

The assignment entity refers to any assignment that has been assigned to the

entire class. The assignment entity contains the content of the assignment. The

assignment is associated with the submission entity, which defines the relationship

between a student and the assignment. The assignment entity is also associated

with the additional media entity which defines any supplemental resources that

are to be included with the assignment.

● submission

The submission entity defines the relationship between a student and an

assignment. The submission entity contains the student’s submission for the

assignment, their grade, and a transferred flag. The transferred flag informs the

Digital Backpack on whether assignment information needs to be transferred to or

from the student.

● additional media

The additional media entity defines any additional resources that are to be

distributed with a given assignment. This may include supplemental readings,

videos, and so on. Additional media is associated only with the assignment it

belongs to.

● resource

Similar to additional media, the resource entity defines any additional resource

that is to be distributed to the members of a given class. This may include

supplemental readings, videos, and so on. Additional media is associated only

with the class it belongs to.

● resource transfer event

The resource transfer event defines the relationship between a student and a

resource. The transferred flag informs the Digital Backpack on whether a resource

needs to be transferred to the student.

● google search

The google search entity defines Google search requests submitted by a student.

As above, the transferred flag informs the Digital Backpack on whether

information needs to be transferred to or from the student.

31

3.2.5.4 Authentication Database

The authentication database stores only student IDs and the associated authentication

and refresh tokens. The authentication database is implemented in accordance with the

entity-relationship diagram below in figure 3.2.6.2.1

Figure 3.2.6.2.1: Authentication Database Entity-Relationship Diagram.

The following subsections clarify the entities, their attributes, and their relationships with

each other.

● student

The student entity defines a student served by the Digital Backpack. The

studentId is a unique identifier throughout the Digital Backpack system. Student

passwords are stored in a hashed form here for authentication purposes.

● token

The token entity refers to any authentication or refresh token. The tokenId is

described in section 3.2.7.1. The tokenContent attribute contains the token itself.

3.2.6 Authentication Management

The management of OAuth2 tokens is a cooperative effort between the proxy server and the

client application.

32

Figure 3.2.7.1: The OAuth2 Manger Module

The OAuth2 Manager handles the process of acquiring and managing authentication tokens.

These tokens will allow the server to operate on the behalf of the user even when the user is

offline.

Module Components

● AuthManager (Client) - The AuthManager on the client side handles the initial acquisition

of authorization tokens.

● AuthManager (Server) - Authentication and refresh tokens in the Authentication database

are manages by this component

33

● AuthDatabaseManager - The AuthDatabaseManager acts as an interface between the

server-side AuthManager and the authentication database.

3.2.6.1 Token IDs

Authentication tokens and refresh tokens will be identified by their token ID. The token ID

for these tokens will include the following components:

● The service for which the token is used

● The scope of authentication granted by the token

● Whether the token is an authentication token or a refresh token

Token IDs do not contain information associating them to a user. Token association is

determined by the relations established in the authentication database.

3.2.6.2 AuthManager (Client)

The client-side AuthManager is responsible for handling the process of acquiring user

authentication for the various services that the Digital Backpack interacts with. This is a

process that requires internet connection and should only be performed when the app is

initially set up and when new services become relevant to a particular student. This

AuthManager also communicates with the client-side storage manager for the purpose of

retrieving the user’s password.

The following is an explanation of the fields and operations relevant to this AuthManager.

● List: AuthTokens

As the AuthManager obtains permission to operate on the behalf of the user for

various different services and on various different scopes, Oauth2 authorization

tokens are issued to the DigitalBackpack. Said tokens are stored in this list.

● requestAuthCode(userId, authTokenId)

Requesting an authorization code is the first step in the process of obtaining an

authorization token. The AuthManager redirects the user to a webpage where

they grant the Digital Backpack permission to act on the user’s behalf.

● exchangeAuthCode(authCode)

34

The AuthManager contacts the authorization server relevant to a given

authorization code. The AuthManager exchanges the authorization code for an

authorization token.

● appendToken(authToken, authTokenId)

Helper function appends an authToken and its associated ID to the authTokenList.

● clearTokens()

Helper function clears the authTokenList.

● processNewUser(userId, authTokenIdList)

This function manages the process of taking a new user, their list of needed

authorization tokens, and obtaining authorization for each token. These tokens

are then stored in the authTokenList.

● getTokens()

This public-facing interface function returns the list of authTokens

3.2.6.2 AuthManager (Server)

The server-side AuthManager is responsible for managing authorization and refresh

tokens to enable the server to act autonomously and indefinitely on the behalf of the user.

This AuthManager has an AuthDatabaseManager that handles the storage of tokens. This

AuthManager is also responsible for serving tokens to the Server / Resource

Communicator to authorize external operations.

The following is an explanation of the methods used by this AuthManager.

● checkValid(authToken)

The checkValid function takes in an authentication token and checks if the token

has expired. If it has, it refreshes the token and stores the updated token.

● refreshAuthToken(refToken)

The refreshAuthToken function takes in a refresh token and connects to the

associated authentication server to retrieve a refreshed authentication token.

● getRefToken(authToken)

35

The getRefToken function transmits a valid authentication token with the

authentication server and receives a refresh token in return. The refresh token is

then stored in the authentication database.

● processNewTokens(tokens, studentId)

This function handles the processing of new tokens received from a client. Refresh

tokens are obtained and all tokens are stored in the authentication database

● authenticateClientConnection(studentId, hashedPassword)

This function takes a student’s hashed password and compares it to the hashed

password stored in the authentication database.

3.2.6.2 AuthDatabaseManager

The AuthDatabaseManager acts as an interface between the proxy server and the

authentication database.

The following is an explanation of the fields and methods used by this AuthManager.

● list : config

The config list contains the constant information necessary to connect to the

Authentication database, such as the address of the database and login

information.

● connect(config)

The connect function opens a connection to the authentication database.

● addStudent(studentId, hashedPassword)

This function adds a new student to the authentication database.

● removeStudent(studentId)

This function removes a student from the authentication database.

● updatePassword(studentId, hashedPassword)

This function updates a student’s password in the authentication database.

36

● addToken(studentId, token, tokenId)

This function adds a token associated with a student to the authentication

database.

● removeToken(studentId, tokenId)

This function removes the specified token from a given student in the

authentication database.

● getToken(studentId, tokenId)

This function retrieves the specified token that is associated with the specified

student from the authentication database

3.2.7 Encryption

Any sensitive data stored locally in the Digital Backpack system or transferred over the

client/server connection will be encrypted using AES encryption. As such, both the client and the

server will have an Encryptor component that will handle both the process of encrypting and

decrypting and the safe handling of encryption keys.

3.2.7.1 Encryptor (server)

The proxy server has no hardware to ensure the secure storage of keys and is hosted on

third-party hardware. For these reasons, the server-side encryptor does not store it's key.

37

Instead, the key must be transferred to the server over a secure TCP connection

whenever the server is restarted.

The following is an explanation of the fields and methods used by this encryptor.

● secretKey

This is the AES encryption key used to perform encryption operations.

● port

This is the port on which the encryptor listens for it’s AES key on startup.

● listen()

This function starts a server that waits for a TCP connection over which to receive

it’s encryption key.

● encrypt(file, secretKey)

This function encrypts the given file through a standard AES encryption algorithm.

● decrypt(file, secretKey)

This function decrypts the given file through a standard AES decryption algorithm.

● hash(string)

This function hashes the given string using a standard salted hash algorithm.

38

3.2.7.2 Encryptor (client)

Figure 3.2.7.2.1: Encryptor (Client) UML Diagram

The client-side encryptor utilizes Android’s secure storage hardware to safely store the

AES encryption key.

The following is an explanation of the fields and methods used by this encryptor.

● secretKey

This is the AES encryption key used to perform encryption operations.

● alias

This alias is a string identifier for the Digital Backpack entry in the Android

keystore environment.

● encrypt(file, secretKey)

This function encrypts the given file through a standard AES encryption algorithm.

● decrypt(file, secretKey)

This function decrypts the given file through a standard AES decryption algorithm.

● createKeystore(alias)

This function creates an entry for the Digital Backpack in the Android keystore

environment.

39

● loadKeystore(alias)

This function loads the Digital Backpack’s entry from the Android keystore

environment and retrieves the secretKey stored there.

● generateKey(alias)

This function uses the Android keystore library to generate an AES encryption key.

● hash(string)

This function hashes the given string using a standard salted hash algorithm.

40

Team DigiLearn

4.0
Implementation
Plan

The implementation of the Digital Backpack has been broken up into four phases. The first two

phases are summarized by the following Gannt charts. Figure 4.0 covers phases one and two

while Figure 4.1 covers phases three and four.

The first phase of the project was the Software Design and Project Initiation phase. This phase

was dedicated to planning the project for the semester and defining the implementation details

of the project. The final product of this phase was this document.

The second phase is the Full Prototype Initiation phase, which is the first and primary

implementation phase. During this phase, a fully functional prototype of the Digital Backpack will

be created. Development of the Digital Backpack will be organized into week-long sprints. These

sprints will begin and end on Tuesday. During the Tuesday team meeting, team members are

expected to report their progress and address any issues from the previous week. On the

following day’s Wednesday meeting, tasks will be updated and the next week’s sprint will be

planned.

The third phase of the project is the Software Refinement and Testing phase. The development
process will continue to be organized into week-long sprints in the same format as described
above. During the phase, the full prototype of the Digital Backpack is complete and development
shifts towards refining the final product through the modification of features and bug-fixing.
During this time, the team will conduct experimental and user-based testing to confirm that the
project meets the performance requirements outlined in the Requirements Specifications
document.

41

Figure 4.1 Gantt Chart of Phases One and Two

42

Figure 4.2: Gantt Chart of Phases Three and Four

43

Team DigiLearn

5.0 Conclusion

As the internet has become more and more of a necessity for students of all levels of education

the “digital gap” has grown considerably. Students without regular or reliable internet access are

at a significant disadvantage compared to others that are able to access the internet consistently.

The Digital Backpack project aims to aid students struggling with this issue by offering an

opportunistic Content Delivery Network or oCDN for educational content. The Digital Backpack

application will give users the ability to download and upload homework assignments, tests, and

even search for resources to support their learning in the background, any time they are able to

connect to the internet. By storing these things on the user’s device they will be able to take

educational content home and still be able to participate similarly to students with constant

internet access while being completely offline.

This document served to define the software design plans of the Digital Backpack. The project

overview, in Section 2.0, described the technologies that will be used for the project, as well as a

general plan for the architecture of the system. Section 3.0 discussed in details the most

important components of the Digital Backpack to go in depth on the requirements for each of

these components. Section 3.1 focuses on the front-end of the system, discussing the views of

the application as designed for an ideal user experience. Section 3.2 describes the back-end that

brings the project to life and allows for a smooth online and offline transition. The implementation

plan for the project is expressed through a Gantt chart in Section 4.0.

Enumerating the details of this project provides a clear guideline for the future of the Digital

Backpack. The specifications and technologies described in this document were chosen

according to their compatibility with the requirements requested by the client. This exploration of

compatible technologies has further refined the overall final project. Previous requirements, such

as Khan Academy support, have been abandoned due to incompatibility errors that were found

during research. These issues have been discussed and acknowledged by the client. Still, the

44

overall goal of the project has been determined to be attainable. The success of this project will

bring about the expansion of educational opportunities for disenfranchised communities.

45

